Nonthermal Ions in the Vicinity of the Moon Yoshifumi Futaana Rarefaction wave Mini bow shock Solar wind Fotential Void region IMF (not to scale) 2002 地球電腦類音手会 夏の学校 702 2002 11:40 AM

Instrumentation

- Particle Spectrum Analyzer/Ion Spectrum Analyzer (PSA/ISA) on board NOZOMI
- E/q analyzer
- 3-D distribution function in 1 spin (6.5 sec)
- $^{\circ}$ 6 eV/q \sim 15 keV/q by 32 steps
- Omnidirectional view angle with a resolution of 22.5[deg.] x 22.5[deg.]

Observed Nonthermal Ions

3-D Velocity Distributions

Solar Wind Conditions

The closest approach of NOZOMI to the Moon occurred at 07:34UT.

- The altitude was 2,800 km.
- Interplanetary magnetic field and solar wind velocity were steady duirng the observation.

Generation Mechanisms

- Five candidates has been considered.
- 1) Solar wind protons deflected by IMF disturbances.
- 2) Reflected protons by Earth's bow shock.
- 3) Heavy ions escaped from the lunar surface
- 4) Protons generated in the lunar exosphere
- 5) Solar wind protons deflected near the Moon associated with a local magnetic anomalies.

Estimation of Mass

`Observed" velocities of heavy ions are sqrt(M/q) times larger than `real" velocities.

$$\frac{1}{16m} = \frac{m_{\rm p}}{2q} V_{\rm obs}^2$$

$$\frac{1}{14m} = \frac{m_{\rm p}}{2q} V_{\rm obs}^2$$

- The same velocities of ions with different M/q value are divided by PSA/ISA in the `observed" velocity space.
- * The determination of the ``observed" ExB drift velocity means the estimation of M/q value.
- ``Observed" ExB drift velocity contains the information on M/q value.

Ion Species

- Estimation of ion species is possible by analyzing the energy dependence of ExB drift.
- The species is proton because M/q=1.

Particle Tracing

- Assumptions
- Uniform magnetic field (|B|=3nT)
- Uniform solar wind velocity (|V|=350 km/sec)
- Results
- Most of the protons have come from the lunar dayside.
- * Initial velocities of the protons were very large. Some of them exceeded the solar wind velocity.

Test Particle Tracing

- Numbers of the test particles of which trajectory is connected to the lunar dayside among 4096 test particles
- For the verification of nonthermal component dissappearance.
- the magnetic field conditions for the observation of lunar ions
- 4096 test particles correspond to the ISA's observable velocities
- Estimation error of the magnetic field (20 degree) is considered

Generation Mechanism

- Moon related deflection is the most plausible mechism for interpreting the observation.
- The most possible deflection mechanism is a miniature bow shock associated with the magnetic anomaly.
- The large initial velocities of nonthermal ions indicatte a dynamic structure in front of the Moon.

Results of Tracing

- The results are very consistent with the observation.
- 8:01 UT, but are small for 7:43 UT.

Conclusion

- Moon related ions have been detected by PSA/ISA on board NOZOMI.
- They were found to be protons and have the partial ring structures in the velocity space.
- Their source was estimated to be the dayside of the Moon.
- They appeared when the electric and magnetic field were good conditions for the observation.
- They must be deflected solar wind protons in the vicinity of the Moon.
- Miniature bow shock associated with lunar crustal magnetic anomalies may deflect solar wind protons.